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ABSTRACT

Superconducting radio-frequency cavities made from Nb are widely used in particle

accelerators due to their ability to sustain strong electromagnetic fields with low

energy loss. Their performance is strongly influenced by surface superconducting

properties, which can be controlled through heat treatments that introduce interstitial

oxygen.

This project models how oxygen diffuses into Nb during baking and how this

affects Nb’s superconducting behavior. Using the Crank–Nicolson numerical method,

we solved a reaction–diffusion equation to simulate oxygen concentration profiles and

compute related superconducting quantities such as the magnetic penetration depth

and supercurrent density.

By simulating thousands of recipes, we analyzed how different baking conditions

influence performance. We evaluated the recipes by three metrics: peak and surface

supercurrent, and the depth of the supercurrent peak.

The results show that quantifying an optimized recipe must take into account

multiple metrics. We also found a limit for baking conditions beyond which the peak

supercurrent can no longer be pushed into the bulk Nb. This work provides the basis

of a framework for understanding and improving heat treatments for Nb cavities as

they relate to SRF particle accelerators.
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Chapter 1

Introduction

The main focus of this honours project is the optimization of superconducting radio-

frequency (SRF) cavities, which are crucial components in particle accelerator tech-

nology. While experimental work has improved cavity performance over the past

decades [21], many methods rely on empirical recipes - a certain time and temperature

combination - discovered through trial and error. By taking a theoretical simulation

approach this project aims to provide a way to enhance the cavity performance in a

more systematic and scalable way.

Improving SRF cavities has important implications for both fundamental research

and applied science. These cavities typically made out of niobium (Nb) are respon-

sible for transferring electromagnetic energy into kinetic energy, enabling the accel-

eration of higher energy particles. Optimized cavities increase accelerating gradients,

reducing operational costs, and improving accelerator footprints.

A numerical simulation approach is taken, using a finite difference method (fdm)

to explore heat treatment conditions for optimizing Nb cavities. Specifically, this

work develops a software package that simulates oxygen dissolution and diffusion

dynamics under a wide range of treatment parameters, while computing useful and

relevant quantities. This provides the ability for future researchers to test hypotheses

and refine recipes without the need to physically bake Nb samples which is time

consuming and costly.

The main ideas of this project include the application of the Crank–Nicolson (CN)

method to solve the oxygen dissolution and diffusion equations in Nb [16], as part

of a codebase facilitating simulations over a wide range of treatment conditions, giv-

ing the ability to efficiently explore the problem parameter space. These simulations

make it possible to track how oxygen concentration profiles evolve in the near-surface
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region (∼5 nm) during vacuum heat treatments and how these profiles impact super-

conducting performance [19].

Initial results have provided information on the relationship between treatment

conditions and cavity performance. In particular, the simulations enable the setup

for quantifying the performance for a given recipe, and show a clear limit where heat

treatments provide optimal doping profiles and increased cavity performance.

1.1 Agenda

• Chapter 1 contains an introduction to the project’s scope and outlines the

core ideas, goals, and claims of the work.

• Chapter 2 introduces the background and theory of SRF cavities. It em-

phasizes the importance of niobium SRF cavities for particle accelerators and

discusses how heat treatments introduce interstitial oxygen to improve super-

conducting performance. The surface reduction reactions governing this process

are described, and Lechner’s PDE model, which captures this process, is pre-

sented to frame the optimization problem in terms of solving a PDE.

• Chapter 3 describes how the reaction–diffusion equation from Chapter 2 is

solved using the Crank–Nicolson method, a stable and accurate numerical method.

This allows us to simulate how oxygen diffuses into Nb during baking and com-

pute useful superconducting properties, which are further described in this sec-

tion.

• Chapter 4 presents the results and analysis from the numerical simulations. It

first looks at a single heat treatment recipe (120°C for 6 hours) and shows how

the resulting oxygen profile changes Nb’s superconducting properties, most im-

portantly, the supercurrent distribution. Then thousands of recipes across time

and temperature values are analyzed, showing how different recipes affect peak

supercurrent, surface supercurrent, and the depth at which the supercurrent

peak occurs. By considering these metrics, we show what constitutes an opti-

mized recipe and how there is a clear limit to the depth the peak can be pushed

into the bulk of Nb.

• Chapter 5 Goes over the discussion and presents the conclusions from the

work.



3

• Chapter 6 summarizes the projects contributions and outlines future direc-

tions.
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Chapter 2

Optimizing Nb Cavities

Superconducting radio-frequency accelerators rely on the ability to generate and sus-

tain strong electromagnetic fields with minimal energy loss. A key component en-

abling this capability is the superconducting cavity — a resonant chamber typically

made from Nb.

2.1 SRF Accelerators and Niobium Cavities

In an SRF accelerator, radio-frequency (RF) fields oscillate within a cavity and parti-

cles are sent into the cavity timed in such a way that they align with the phase of the

oscillating RF field and experience an energy gain as they pass through. To minimize

energy losses, these cavities are constructed from superconducting materials, such as

Nb, due to its high superconducting critical temperature (Tc ≈ 9.7± 0.6 K)[26].

When cooled below its critical temperature, Nb transitions into a superconducting

state and expels magnetic fields from its bulk (the Meissner effect). However, RF fields

can still penetrate the surface, resulting in flux vortices and energy to be lost from

the cavity. This means the cavity performance is critically sensitive to the material

surface composition and needs to be engineered accordingly.

2.2 Heat Treatments: Baking of Nb Cavities

A common method to engineer Nb, thereby enhancing surface performance, is heat

treatments in vacuum ovens. This is done by first exposing the Nb sample to air

and doping the near surface region (∼5 nm) then baking the sample for a given
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“recipe” (time and temperature). This process introduces oxygen intersitials into the

niobiom, resulting in an inhomegeneous oxygen concentration profile, affecting the

superconducting properties of Nb. By fine tuning the oxygen concentration profile

we are able to control the screening profile and supercurrent density, allowing the Nb

to store higher amounts of energy without loss.

Low-temperature baking is a common regime typically conducted at 120°C for

24–48 hours. It has been shown to reliably reduce the Q-drop at high accelerating

gradients [6]. This improvement, initially discovered empirically, is most likely due

to a set of chemical reactions involving oxygen species in the near the surface region

of the cavity.

The reaction reduction process can be described as follows: native Nb pentoxide

(Nb2O5) exists as a thin surface oxide layer due to air exposure. During baking, this

oxide undergoes a reduction reaction, releasing oxygen into the Nb sample. The main

chemical reactions can be represented as:

Nb2O5
k1−→ 2NbO2 +O,

NbO2
k2−→ NbO +O,

NbO
k3−→ Nb + O,

(2.1)

where ki is the reaction rate constant.

Figure 2.1: Schematic of Surface Layer Oxygen Diffusion Process [25]

Through this diffusion process interstitial oxygen atoms are introduced into the
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near surface region (∼150 nm) as seen above, altering the material makeup and

modifying the superconducting properties of the Nb in such a way that the cavity

performance is increased.

2.3 Modeling the Oxygen Diffusion Process

To better understand and optimize this process, Lechner et al. [16] proposed a reac-

tion–diffusion model that describes the evolution of the oxygen concentration profile

during baking. The partial differential equation (PDE) describes Fick’s second law

of diffusion with a reaction source term:

∂c(x, t)

∂t
= D(T (t))

∂2c(x, t)

∂x2
+ q(t, T (t)) (2.2)

where C(x, t) is the oxygen concentration as a function of depth x and time t, D(T )

is the diffusion coefficient (temperature dependent), and q(t, T (t)) is a reaction term

describing the rate of oxygen release from the oxide layer. It should be noted that a

time dependent temperature was not considered in the simulations and analysis.

This PDE captures the reaction diffusion process, providing a framework to sim-

ulate different baking parameters and investigate the resulting oxygen concentration

profile. The problem then boils down to how can we efficiently and accurately solve

this PDE for a wide array of time and temperature inputs to explore the parameter

space of heat treatments as they relate to optimizing Nb cavity performance?
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Chapter 3

Solving the Dissolution Diffusion

Equation

3.1 Numerical Approach: The Crank–Nicolson Method

To solve the reaction–diffusion PDE introduced in the previous section, we employ

the Crank–Nicolson (CN) method, an implicit finite difference method originally de-

veloped to solve the heat equation [7].

The CN method discretizes time and space, representing the oxygen concentration

c(x, t) on a 2D grid of Nx points in space (with step size ∆x) and Nt points in time

(with step size ∆t). The oxygen concentration is then approximated at each grid

point removing the need to solve the PDE analytically.

The PDE
∂c

∂t
= D

∂2c

∂x2
+ q(x, t) (3.1)

is discretized using central differences in space and trapezoidal integration in time,

giving second-order convergence:

Cn+1
i − Cn

i

∆t
=

D

2(∆x)2
[
Cn+1

i+1 − 2Cn+1
i + Cn+1

i−1 + Cn
i+1 − 2Cn

i + Cn
i−1

]
+ qni . (3.2)

Rearranging terms, the discretized system at each time step takes the form:

ACn+1 = BCn +∆tQn, (3.3)

where A and B are tridiagonal matrices containing coefficients derived from the CN
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method which define the spread of oxygen from one spatial grid to the next and Qn

is the reaction source vector at time step n.

The solution is generated iteratively, solving at each time step using:

Cn+1 = A−1 (BCn +∆tQn) , (3.4)

with appropriate boundary conditions (Neumann: ∂c/∂x = 0 at x = 0, L) and an

initial condition C0.

This reformulation of the reaction diffusion PDE in terms of a computational

linear algebra problem enables efficient solving for the oxygen concentration profile

under a wide array of heat treatment conditions. By construction the CN method is

stable given this stability parameter is satisfied.

σ ≡ D∆t

2(∆x)2
, (3.5)

this parameter is equal to the von Neumann stability number r = D∆t/(∆x)2. The

Crank–Nicolson method is unconditionally stable, however, if σ is too large numerical

oscillations may still occur resulting in nonphysical solutions. Therefore attention

must still be given to the space and time step size to ensure numerical stability

and generate a physical solution. Additionally the boundary conditions assume the

concentration goes to zero at x = L which means the spatial domain needs to be

sufficiently large.

3.2 Computing Superconducting Properties from

the Oxygen Profile

The Crank–Nicolson method allows us to simulate how oxygen diffuses into the surface

of Nb during heat treatments. The main output of these simulations is the oxygen

concentration profile c(x, t), which tells us how much oxygen is present at different

depths x inside the material. From this profile, we can calculate several important

superconducting properties that influence the performance of Nb cavities and gain

insight into what constitutes an optimized heat treatmnet.
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3.2.1 Oxygen Concentration Profile

The oxygen concentration profile c(x, t) describes the percentage of oxygen as a func-

tion of depth below the Nb surface. Heat treatments typically result in a shallow

oxygen doped layer, usually no deeper than 150 nm. This layer changes the way su-

perconducting currents are distributed in the surface region, which is critical because

Nb cavities need to maintain the Meissner state to screen external magnetic fields.

3.2.2 Electron Mean Free Path ℓ

The electron mean free path ℓ is the average distance an electron can travel before

scattering. When oxygen atoms are introduced during baking, they act as scattering

points, reducing ℓ. There is a simple inverse relationship:

ℓ(x) ∝ 1

c(x)
. (3.6)

Meaning that the more oxygen there is at a certain depth, the shorter the mean free

path will be.

3.2.3 Effective Magnetic Penetration Depth λeff

The effective magnetic penetration depth λeff is the distance over which a magnetic

field decays inside a superconductor in the Meissner state. It is used to calculate the

magnetic screening profile and understand how well Nb can shield external magnetic

fields.

λeff(x) = λL

√
1 +

π

2
· ξ0
ℓ(x)

, (3.7)

where: λL is the London penetration depth, ξ0 is the coherence length, ℓ(x) is the

mean free path.

As more oxygen is introduced near the surface, ℓ(x) decreases, causing λeff(x) to

grow, affecting the distribution of supercurrents and the overall energy loss in the

cavity.

3.2.4 Magnetic Field Screening Profile B(x)

The magnetic field profile B(x) describes how an applied magnetic field penetrates

into a superconductor in the Meissner state. It is important for understanding how
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well the material screens magnetic fields, which directly affects energy losses and the

overall performance of SRF cavities.

To calculate B(x), we solve a generalized form of the London equation that ac-

counts for the change in λeff(x). As a result, the magnetic field profile does not follow

the simple exponential decay expected for pure Nb. Instead, the decay is subtly mod-

ified by the oxygen concentration profile, influencing the superconducting properites

of Nb.

3.2.5 Supercurrent Density J(x)

The supercurrent density J(x) describes how much current is flowing at each depth to

screen the magnetic field. It’s proportional to the derivative of the magnetic screening

profile:

J(x) = − 1

µ0

dB(x)

dx
, (3.8)

where µ0 is the permeability of free space. A sharper drop in B(x) near the surface

means a stronger current. Because the shape of B(x) depends on λeff(x) and therefore

on the oxygen profile, the supercurrent density is thereby influenced by the heat

treatment.

3.2.6 Summary

From the oxygen profile c(x) we calculate relevant superconducting quantities and

can gain insight into how Nb behaves after heat treatments. By computing the mean

free path, magnetic penetration depth, magnetic screening profile, and supercurrent

density, we can directly relate a heat treatments effects to Nb cavity performance.

This connection between material engineering and superconducting behavior is crucial

for understanding what type of heat treatments give optimized results.
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Chapter 4

Discussion and Analysis

In this chapter, we analyze the results obtained from the numerical simulations of

oxygen diffusion in Nb, and examine how these results translate into changes in Nb’s

superconducting properties. First we look at a single heat treatment recipe — baking

at 120°C for 6 hours — to investigate the resulting oxygen concentration profile and

its effects on the superconducting quantities.

Then we look at the parameter space for low and mid temperature by simulating

thousands of heat treatments for different time and temperature values. For each

simulation, we plot three important features: (1) the peak value of the supercurrent

density, (2) the supercurrent density at the surface, and (3) the depth at which

the peak occurs. These results provide insight into how different baking conditions

influence superconducting performance and can help quantify the effectiveness of a

given recipe.

4.1 Understanding the Effects for a Given Recipe

Figure 4.1 shows the results of a numerical simulation for a 120°C, 6-hour baking

recipe. The oxygen concentration profile (top panel) shows a sharp drop in the first

∼20 nm of the Nb, followed by a long tail going to zero in the bulk. This is shape is

desired as it mimics the effects of an SS-bilayer and reduces the electron mean free

path ℓ(x) near the surface, which in turn increases the effective magnetic penetration

depth λeff(x) in that region.

Although the resulting magnetic field screening profile B(x) only shows a subtle

deviation from the exponential decay expected for pure Nb, the effect on the super-
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Figure 4.1: Effect on superconducting properties for Baking Conditions: 6 h,120◦C

current density J(x) is much more significant. This is because J(x) is proportional to

the derivative of B(x), so even small changes in the slope of B(x) produce noticeable

shifts in the shape and distribution of the screening current.

The important thing to notice is that the peak of J(x) is pushed deeper into the

material, and the surface value of the supercurrent density is reduced. This shift in the

supercurrent deeper into the material is beneficial for Nb cavity performance because

it helps reduce energy loss at the surface. By adjusting the oxygen profile through

baking, we can improve how the cavity behaves with stronger RF fields applied and

stop the cavity quality factor from dropping off.
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4.2 Searching for an Optimized Recipe

To better understand how different heat treatment parameters affect SRF cavity

performance, we simulated thousands of unique baking recipes across a broad range of

time and temperature combinations. For each simulation we plotted superconducting

quantities such as the peak value of the supercurrent density J(x), the value of J(x)

at the surface, and the depth at which the peak occurs. These metrics provide insights

into how the superconducting properties change with varying oxygen concentration

profiles.

Below in figure 4.2 we can see the value of the peak supercurrent normalized by

the peak in clean Nb. There are two distinctive ‘bands’ of contour lines corresponding

to sets of potentially optimized recipes.
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Figure 4.2: Peak Supercurrent Density Variation with Baking Conditions

To understand what superconducting properties correspond to the best recipe, its

crucial to note that no single metric can determine whether a recipe is optimal. For
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Figure 4.3: Surface Supercurrent Density Variation with Baking Conditions

example, if we focused only on minimizing the peak supercurrent density without

considering its depth, we might choose a recipe of 200°C, 40-hours where in figure 4.2

we can clearly see a minimized peak. While this might appear optimal, to the contrary

it would not give us even close to the effects we want, as by comparing with figure 4.4

we can see this recipe corresponds to a peak that occurs right at the surface of the

Nb sample. If the peak supercurrent density occurs at the surface, it indicates that

the superconducting properties of Nb have been destroyed. Meaning, the material no

longer effectively screens magnetic flux, resulting in increased energy losses and worse

cavity performance.

This clearly demonstrates why it is essential to evaluate multiple metrics when

searching for an optimized recipe. A good heat treatment should not only reduce the

peak and surface values of J(x) but also push the current peak away from the surface

and into the bulk, such that the Nb can maintain a meissner state and properly screen

magnetic flux.
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Figure 4.4: Depth of Peak Supercurrent Variation with Baking Conditions

Taking these various metrics into account, we can see a clear contour corresponding

to a minimized peak supercurrent while having that peak pushed into the bulk and

at the same time minimizing the surface supercurrent value. This demonstrates not

only how we can start to understand what constitutes an optimized recipe but also

how in such an optimization problem where you are looking at multiple metrics you

necessarily have to make tradeoffs to get an optimal solution.

Additionally a key takeaway comes from analyzing the position of the supercur-

rent peak, we see a clear boundary beyond which the superconducting behavior is

effectively destroyed. Recipes that exceed a certain time or temperature threshold

result in the supercurrent occurring right at the surface, indicating that too much

oxygen has been dissolved into the sample. This sets a theoretical limit on the treat-

ment parameters, beyond which we not only don’t see further optimization of Nb’s

superconducting properties, we also see them effectively destroyed. This emphasizes

the importance of precise recipes and baking mechanisms to push Nb superconducting
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qualities as far as possible without going past this limit.
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Chapter 5

Conclusions

This project explored how baking niobium SRF cavities under different conditions

affects their superconducting performance. By simulating the diffusion of oxygen

into Nb during heat treatments, we were able to study how the resulting oxygen

profiles change important superconducting properties like magnetic field screening

and supercurrent distribution.

We showed through analyzing one specific recipe: baking at 120°C for 6 hours that

these type of heat treatments can create an oxygen concentration near the surface

of the material, with a steep drop-off into the bulk. This type of profile is beneficial

because it causes the supercurrent to shift away from the surface and deeper into the

material, reducing surface losses and helping the cavity maintain good performance

at high RF fields.

Next we simulated thousands of recipes across a wide range of time and tem-

perature combinations. For each one, we looked at three key metrics: the peak

supercurrent value, the value at the surface, and the depth at which the peak su-

percurrent occurs. These metrics enabled a greater understanding of what makes a

recipe optimized and set the foundation for rigorously defining a figure of merit to

quantify a given recipe.

We found it was important to consider all metrics in the analysis. If only the peak

supercurrent was looked at then incorrect conclusions were made as to what baking

conditions gave an optimized recipe. Some recipes that minimize the peak actually

cause it to occur at the surface, which doesn’t give us the superconducting properites

we desire. Instead, the best recipes are the ones that keep the peak low, keep the

surface supercurrent low, and also push the peak deeper into the bulk of Nb.

Notably, we found a clear limit for baking temperature and time, beyond which
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the peak supercurrent always occurs right at the surface, making it impossible to

achieve an optimized result.
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Chapter 6

Future Work

While this project has provided insights into how baking affects the superconducting

properties of niobium SRF cavities, there is still much more to be done to fully

understand and define what makes an optimized heat treatment recipe.

The numerical approach and codebase developed offer a solid foundation for fu-

ture research. By simulating how oxygen diffuses into Nb and how this affects its

superconducting quantities, we now have software that can explore the parameter

space of baking conditions.

One important direction for future work is to improve the accuracy of the nu-

merical method. In particular, the current simulations assume a constant diffusion

coefficient, but at higher temperatures it becomes relevant to consider a time depen-

dent diffusion coefficient.

Another interesting direction is multi-step heat treatments. For example, after an

initial heat treatment the sample could be exposed to air again and re-baked to further

modify the doping profile. Simulating these more complex treatment sequences could

lead to new ways of engineering the surface properties of Nb cavities.

In addition, while this project focused on three main metrics — peak supercurrent,

surface supercurrent, and peak supercurrent depth — they still need to be combined

into a quantitative figure of merit. Defining such a figure could help systematically

compare different recipes and identify optimal regions of the parameter (recipe) space.

Overall, this project demonstrates the value of a numerical approach in under-

standing and optimizing Nb cavity treatments. Future work would enable the dis-

covery of better recipes, a more complete theoretical understanding of cavity perfor-

mance, and more efficient cavity production.
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Appendix A

Crank Nicolson Solver

1 """Crank -Nicolson example.

2

3 Adapted from: https :// georg.io /2013/12/03/ Crank_Nicolson

4

5 see also: https :// math.stackexchange.com/a/3311598

6 """

7

8 class CNSolver:

9 """Crank -Nicolson Solver for 1D Diffusion Problems.

10

11 This class encapsulates the Crank -Nicolson method to solve

diffusion equations

12 in 1D with specified initial and boundary conditions.

13

14 Attributes:

15 D_u (float): Diffusion coefficient (in nm^2/s).

16 u_0 (float): Initial concentration close to x = 0 (e.g

., at. % nm).

17 v_0 (float): Background concentration (e.g., at. % nm)

.

18 t_h (float): Maximum time in hours.

19 N_x (int): Number of spatial grid points.

20 x_max (float): Maximum spatial boundary (nm).

21 N_t (int): Number of time grid points.

22 x_grid (np.ndarray): Spatial grid.
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23 t_grid (np.ndarray): Temporal grid.

24 sigma_u (float): Proportionality term for Crank -

Nicolson.

25 """

26

27 def __init__(self , T, u_0=1e3 , v_0=1e1 , t_h=48, x_max

=500.0 , N_x=1001 , N_t =4001):

28 self.T = T

29 self.u_0 = u_0

30 self.v_0 = v_0

31 self.t_h = t_h

32 self.x_max = x_max

33 self.N_x = N_x

34 self.N_t = N_t

35

36 # Constants

37 self.D_u = D(T) # Diffusion coefficient (in nm^2/s)

38 self.c_0 = v_0 + u_0 # Initial concentration

39

40 # Spatial and temporal grids

41 self.x_grid = np.linspace (0.0, x_max , N_x , dtype=np.

double)

42 self.dx = np.diff(self.x_grid)[0]

43

44 self.s_per_h = 60.0 * 60.0

45 self.t_max = t_h * self.s_per_h

46 self.t_grid = np.linspace (0.0, self.t_max , N_t , dtype=

np.double)

47 self.dt = np.diff(self.t_grid)[0]

48

49 # Stability parameter

50 self.r = (self.D_u * self.dt) / (self.dx * self.dx)

51 self.stability = "STABLE" if self.r <= 0.5 else "

POTENTIAL OSCILLATIONS"

52

53 # Crank -Nicolson proportionality term

54 self.sigma = 0.5 * self.r
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55

56

57 def gen_sparse_matrices(self):

58 """ Generate the sparse matrices "A" and "B" used by

the Crank -Nicolson method.

59

60 Args:

61 N_x: Dimension of (square) matrices.

62 sigma: The "nudging" parameter.

63

64 Returns:

65 The (sparse) matrices A and B.

66 """

67

68 # common sparse matrix parameters

69 _offsets = [1, 0, -1]

70 _shape = (self.N_x , self.N_x)

71 _format = "csr"

72

73 # define matrix A’s elements

74 _A_upper = [-self.sigma]

75 _A_diag = [1 + self.sigma] + [1 + 2 * self.sigma] * (

self.N_x - 2) + [1 + self.sigma]

76 _A_lower = [-self.sigma]

77 _A_elements = [_A_upper , _A_diag , _A_lower]

78

79 # create matrix A

80 _A = sparse.diags_array(

81 _A_elements ,

82 offsets=_offsets ,

83 shape=_shape ,

84 format=_format ,

85 )

86

87 # define matrix B’s elements

88 _B_upper = [self.sigma]
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89 _B_diag = [1 - self.sigma] + [1 - 2 * self.sigma] * (

self.N_x - 2) + [1 - self.sigma]

90 _B_lower = [self.sigma]

91 _B_elements = [_B_upper , _B_diag , _B_lower]

92

93 # create matrix A

94 _B = sparse.diags_array(

95 _B_elements ,

96 offsets=_offsets ,

97 shape =(self.N_x , self.N_x),

98 format=_format ,

99 )

100

101 # return both matrix A and B

102 return _A, _B

103

104 def get_oxygen_profile(self):

105 """ Solve the diffusion equation using the Crank -

Nicolson method.

106

107 Returns:

108 np.ndarray: The solution record (time x space).

109 """

110 # Initial condition: Concentration is all in the first

spatial bin

111 U_initial = sparse.csr_array ([self.v_0 / self.dx] +

[0] * (self.N_x - 1))

112 U_record = np.zeros ((self.N_t , self.N_x), dtype=np.

double)

113

114 for i, t in enumerate(self.t_grid):

115 if i == 0:

116 # Record the initial condition

117 U_record[i] = U_initial.toarray ()

118 else:

119 # Source term (plane source at x = 0)
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120 f_vec = sparse.csr_array ([q(t, self.T) * (self

.dt / self.dx)] + [0] * (self.N_x - 1))

121

122 # Generate matrices (could be precomputed if

D_u is constant)

123 A, B = self.gen_sparse_matrices ()

124

125 # Solve for the next time step

126 U = sparse.csr_array(U_record[i - 1])

127 U_new = sparse.linalg.spsolve(A, B @ U + f_vec

)

128 U_record[i] = U_new

129

130 return U_record

Listing A.1: Crank–Nicolson Solver Class for 1D Oxygen Diffusion
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